Bayesian spatial modelling for high dimensional seismic inverse problems

نویسندگان

  • Ran Zhang
  • Claudia Czado
  • Karin Sigloch
چکیده

We study the application of Bayesian spatial modelling to seismic tomography, a geophysical, high dimensional, linearized inverse problem that infers the three-dimensional structure of the Earth’s interior.We develop a spatial dependence model of seismic wave velocity variations in the Earth’s mantle based on a Gaussian Matérn field approximation. Using the theory of stochastic partial differential equations, this model quantifies the uncertainties in the parameter space by means of the integrated nested Laplace approximation. In resolution tests using simulated data and in inversions using real data, our model matches the performance of conventional deterministic optimization approaches in retrieving three-dimensional structure of the Earth’s mantle. In addition it delivers estimates of the full parameter covariance matrix. Our model substantially improves on previous work relying on Markov chain Monte Carlo methods in terms of statistical misfits and computing time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian Linear Model for the High-dimensional Inverse Problem of Seismic Tomography

We apply a linear Bayesian model to seismic tomography, a highdimensional inverse problem in geophysics. The objective is to estimate the three-dimensional structure of the earth’s interior from data measured at its surface. Since this typically involves estimating thousands of unknowns or more, it has always been treated as a linear(ized) optimization problem. Here we present a Bayesian hierar...

متن کامل

A Computational Framework for Infinite-Dimensional Bayesian Inverse Problems Part I: The Linearized Case, with Application to Global Seismic Inversion

We present a computational framework for estimating the uncertainty in the numerical solution of linearized infinite-dimensional statistical inverse problems. We adopt the Bayesian inference formulation: given observational data and their uncertainty, the governing forward problem and its uncertainty, and a prior probability distribution describing uncertainty in the parameter field, find the p...

متن کامل

Inverse Problems in Imaging Systems and the General Bayesian Inversion Frawework

In this paper, first a great number of inverse problems which arise in instrumentation, in computer imaging systems and in computer vision are presented. Then a common general forward modeling for them is given and the corresponding inversion problem is presented. Then, after showing the inadequacy of the classical analytical and least square methods for these ill posed inverse problems, a Baye...

متن کامل

A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion

We address the solution of large-scale statistical inverse problems in the framework of Bayesian inference. The Markov chain Monte Carlo (MCMC) method is the most popular approach for sampling the posterior probability distribution that describes the solution of the statistical inverse problem. MCMC methods face two central difficulties when applied to large-scale inverse problems: first, the f...

متن کامل

Delivery4D: an open–source model–based Bayesian seismic inversion program for time-lapse problems

An extension of the open–source Bayesian AVO inversion program Delivery [1],[2] to time–lapse seismic inversion problems is described. The inverse problem is for a trace–wise layer–stack model comprising unknown layer–times, rock properties, fluid types and saturations, and pore pressure changes. The “data” are true–amplitude imaged/migrated seismic reflectivity traces, for arbitrary numbers of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015